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Motivation: Image Classification (Labelling)

I 70,000 grayscale 28× 28 pixel
handwritten digits 0− 9.

I Construct k -nearest neighbor graph
with weights of Euclidean distance
between images (an example).

d2
E (x , y) =

MN∑
k=1

(xk − yk )2 , x , y ∈ RMN

I Minimize graph energy

(?)

subject to
constraints (training set data).

Conventional convolutional neural networks require Euclidean
topology. The notion of distance in graphs can be abstract
(manifolds).
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Semi-Supervised Learning

Consider ordered pairs
{

(xi , yi)
}n

i=1 ∈ X × Y.

X : data, lives in Rd .
Y : labels (class), lives in Rk , e.g., in the image classification
problem, the label for an image showing digit 7 is the integer 7.

Problem
Learn a labelling function u : X → Y given

I all of the labels Y: fully-supervised, i.e. least square
regression. But labels are hard to obtain (sparseness).

I none of the labels Y: unsupervised.

Ground in-between
Learn u given only labeled data (x1, y1) , . . . , (xm, ym) where
m� n: semi-supervised learning.
Various sample size limits to the two extreme modes.
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Graph Energy Minimization

Smoothness assumption for semi-supervised learning.

Graph construction
Recall X is data space. Construct G = (X ,W) with weight
W =

(
wxy
)

x ,y∈X encoding similarity between data.

Recast as an optimization problem
For energy E (u) and a labeling function u (x) =

(
ui (x)

)k
i=1{

Minimise E (u) over u : X → Rk smoothness of u
subject to u = g : Γ ⊂ X → Y on Γ given labeled data

where examples of graph energy E (u) are Dirichlet energy

E (u) =
1
2

∑
x ,y∈X

wxy
∣∣u (y)− u (x)

∣∣2 =
1
2

uT Lw︸︷︷︸
graph Laplacian

u
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Calculus on Graphs

We need proper notions of
I inner product

(u, v)l2(X ) =
∑
x∈X

u (x) v (x) ;

I derivatives/gradient,

∇u (x , y) = u (x)− u (y) ;

I vector fields (on edges), antisymmetric

V : X 2 → R, V (x , y) = −V (y , x) ;

I divergence (to satisfy discrete divergence theorem)

divV (x) =
∑
y∈X

wxyV (x , y) ,

and classical theoretical tools
I maximum principles for Laplacian regularized minimization;
I you name it ...
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More on Random Graphs: Concentration of Measure

It is wise to learn how “well-behaved” a random graph
generated by sampled data is.

Chebyshev’s overkilling condition and bad tails
For i.i.d random variable Xi with finite common mean µ and
variance σ2,

Sn =
1
n

n∑
i=1

Xi , P
(
|Sn − µX | ≥ t

)
≤ σ2

nt2 .

Hoeffding Inequality
For i.i.d random variables Xi with finite mean µ such that
|X − µ| ≤ b for some positive b,

P
(
|Sn − µX | ≥ t

)
≤ 2 exp

(
− nt2

2b2

)
.
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Passing to the (mean-field) limit

From discrete to continuous

Eε,n,w (u) =
Cε,n,w

2
uT Lwu ?→ 1

2

∫
X

∣∣∇u (x)
∣∣2 ρ2 (x) dx = E (u)

where Cε,n,w is a proper normalizing constant.

I Solving discrete graph energy minimisation is expensive
when data set becomes uncontrollably large.

I With probabilistic tools, we can make almost sure
statements about the convergence of the discrete energies
to continuous (nonlocal) energies.

I “It is an interesting, and somewhat open, problem to
determine the fewest number of labeled points for which
discrete to continuum convergence holds.” - Jeff Calder [1]
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A Transportation Point of View

Map from empirical distribution (discreteness of data), via
partition of space and an extension operator, to a continuum
integral counterpart.

Extension operator
X1, . . . ,Xn i.i.d with density ρ on U. There exists a partition
(a.s.) {Ui} (a cover) of those data, a corresponding density ρδ
such that ρδ (Ui) = 1

n and an extension operator Eδ such that

Eδu (x) =
n∑

i=1

u (Xi) 1Ui (x) ,

Transportation Map Tδ
Define Tδ (x) = Xi iff x ∈ Ui . Then Eδu = u ◦ Tδ. If one
considers an empirical measure µn on A ⊂ U, then Tδ pushes
forward ρδ to µn.
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Take-aways

I Learn PDE
I Learn probability theory
I Learn calculus of variations if you want to prove

convergence of new methods
I Graph-based methods don’t restrict on underlying

topology.
I Graph-based semi-supervised learning is just a mask of all

of the above combined.
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