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Motivation: Image Classification (Labelling)
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topology. The notion of distance in graphs can be abstract
(manifolds).
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Semi-Supervised Learning

Consider ordered pairs {(x;,y;)};_, € X x V.

X : data, lives in R,

Y : labels (class), lives in R¥, e.g., in the image classification
problem, the label for an image showing digit 7 is the integer 7.

Problem
Learn a labelling function u: X — ) given

» all of the labels ): fully-supervised, i.e. least square
regression. But labels are hard to obtain (sparseness).
» none of the labels ): unsupervised.

Ground in-between

Learn u given only labeled data (x4, 1), ..., (Xm, Ym) where
m < n: semi-supervised learning.

Various sample size limits to the two extreme modes.
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Graph Energy Minimization

Smoothness assumption for semi-supervised learning.

Graph construction

Recall X is data space. Construct G = (X', V) with weight

W= (wy), ex encoding similarity between data.

Recast as an optimization problem
For energy & (u) and a labeling function u (x) = (u; (x))f.(:1

Minimise € (u) over u: X — Rk smoothness of u
subjecttou=g: T c X —YonTl given labeled data

where examples of graph energy £ (u) are Dirichlet energy

1 1
E() =5 Z ny‘U(Y)—U(X)|2:fUT Ly u
2 2 ~—
Xyex graph Laplacian



Calculus on Graphs

We need proper notions of
» inner product

(U V)p(xy = Z u(x)v(x);

XeEX



Calculus on Graphs

We need proper notions of
» inner product

(U V)p(xy = Z u(x)v(x);

Xex
» derivatives/gradient,

Vu(x,y)=u(x)—u(y);



Calculus on Graphs

We need proper notions of
» inner product

(U V)p(xy = Z u(x)v(x);

Xex
» derivatives/gradient,

Vu(x,y)=u(x)—u(y);
» vector fields (on edges), antisymmetric
V:X2_>R7 V(X,y):—V(y7X);



Calculus on Graphs

We need proper notions of
» inner product

(U V)p(xy = Z u(x)v(x);
XeX
> derivatives/gradient,
Vu(x,y) =u(x)—u(y);
» vector fields (on edges), antisymmetric
V:X2_>R7 V(X,y):—V(y7X);

» divergence (to satisfy discrete divergence theorem)

divV (x) =Y wy V(x,y),

yex

and classical theoretical tools
» maximum principles for Laplacian regularized minimization;



Calculus on Graphs

We need proper notions of
» inner product

(U V)p(xy = Z u(x)v(x);
XeX
> derivatives/gradient,
Vu(x,y) =u(x)—u(y);
» vector fields (on edges), antisymmetric
V:X2_>R7 V(X,y):—V(y7X);

» divergence (to satisfy discrete divergence theorem)

divV (x) =Y wy V(x,y),

yex

and classical theoretical tools

» maximum principles for Laplacian regularized minimization;
» voll nName it
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More on Random Graphs: Concentration of Measure

It is wise to learn how “well-behaved” a random graph
generated by sampled data is.
Chebyshev’s overkilling condition and bad tails

For i.i.d random variable X; with finite common mean x and
variance o2,

o2

Z)(Ia |Sf7 MX| > t) ntz

Hoeffding Inequality

For i.i.d random variables X; with finite mean p such that
|X — u| < b for some positive b,

nt?
IP>(‘Sn—MX| > t) < 2exp “op2 |
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Passing to the (mean-field) limit

From discrete to continuous

o (0) = S22 T Lyu % 2 [ VU 2 () 0k = £ )
X

where C. nw is @ proper normalizing constant.

» Solving discrete graph energy minimisation is expensive
when data set becomes uncontrollably large.

» With probabilistic tools, we can make almost sure
statements about the convergence of the discrete energies
to continuous (nonlocal) energies.

» “It is an interesting, and somewhat open, problem to
determine the fewest number of labeled points for which
discrete to continuum convergence holds.” - Jeff Calder [1]
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A Transportation Point of View

Map from empirical distribution (discreteness of data), via
partition of space and an extension operator, to a continuum
integral counterpart.

Extension operator

X1, ..., Xpi.i.d with density p on U. There exists a partition
(a.s.) {U;} (a cover) of those data, a corresponding density ps
such that ps (U;) = 1 and an extension operator E; such that

n

Esu(x) =Y u(X) 1y (%),

i=1

Transportation Map Ts

Define Ts5(x) = X;iff x € U;. Then Esu = uo T;. If one
considers an empirical measure p, on A C U, then Ts pushes
forward ps to pp.



Take-aways

v

Learn PDE

Learn probability theory

Learn calculus of variations if you want to prove
convergence of new methods

Graph-based methods don’t restrict on underlying
topology.

Graph-based semi-supervised learning is just a mask of all
of the above combined.
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